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Abstract 

Phenology is the study of recurring life-cycle events that are initiated and driven by environmental 

factors. Changes in plant phenology constitute solid evidence for the influence of global climate change 

on different species and ecosystems, therefore, it is highly important to monitor phenology and study the 

effect of climate variability on it. Previous phenological studies focused mainly on exploring the shifts in 

the timing of phenological events as a response to various climatic changes. Another developing research 

field is phenology modeling using climatic factors for explanatory and predictive purposes. In the 

framework of phenology monitoring, the main applied methodology was ground based observations and 

simple web RGB cameras. Although multi spectral cameras allow the utilization of common used 

vegetation indices for monitoring purposes, they were rarely used for phenology monitoring. The 

objectives of this research were twofold: (1) Exploring the relations between three main growth limiting 

factors (precipitation, temperature and radiation) and two vegetation indices (normalized difference 

vegetation index (NDVI) and normalized difference water index (NDWI)) in four forests located along a 

climatic gradient in Israel. (2) Monitoring the phenological cycle of four Mediterranean tree species using 

Multi spectral camera in Ramat HaNadiv Park.  

Within the framework of phenological modeling, NDVI and NDWI were used as a proxy to the 

phenology of the forests. Statistical time series modeling approach was used in order to establish best 

explanatory model. This analysis showed the decreasing influence of precipitation as a limiting factor 

from the southern arid site to the northern dry sub-humid site; in the southern Yatir site precipitation was 

the main factor dictating the phenology of the forest. However, in the three others sites (Jerusalem 

corridor, Carmel and Galilee) the influence of temperature and radiation on phenology was either similar 

to that of the precipitation or higher. The explanatory power of the models that were fitted for each site 

was relatively high ranging from adjusted R2 results of 0.76 to 0.87 for the NDVI, and 0.67 to 0.84 for the 

NDWI (depending on the site). Predictive abilities of the models were tested on a validation period and 

showed reasonable functioning, with lower measures in years with extreme climatic events. 
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For phenological monitoring, monthly NDVI time series were retrieved from the multi spectral camera. 

Alongside, seasonal physiological measurements were conducted to support the observed phenological 

processes. NDVI time series showed cycles that are typical for evergreen Mediterranean tree species, with 

higher values around spring season. Physiological measurements indicated on water deficit due to the 

long dry spell in the summer months. No significant correlation was found between chlorophyll 

concentrations and NDVI values.  

In summary, statistical phenology modeling approach can provide good explanatory performance, 

reflecting the constraints of climatic variables on phenology. The prediction abilities of such models 

showed reasonable function, and should be further studied in order to be useful for the prediction of 

phenological events. Phenological monitoring project in Ramat HaNadiv showed the feasibility of a new 

potential methodological tool; however several technical and methodological aspects should be further 

studied.   
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1. Introduction 

1.1 Plant Phenology and climate change  

Phenology can be defined as the study of recurring life-cycle events that are initiated and driven by 

environmental factors (Morisette et al., 2009). In the context of plants, green-up, maturity, senescence, 

and dormancy are examples of phenological events. Phenology constitutes a major aspect of tree 

functioning, productivity, and even its survival depends on the ability to adjust pheno-phases timing to 

changing climatic conditions (Kramer, Leinonen, & Loustau, 2000). The impacts of changing phenology 

can be vast, ranging from local influences on agriculture, fisheries, forestry, and public health (Zhao et al., 

2013) and up to influences on global net carbon uptake (Churkina, Schimel, Braswell, & Xiao, 2005). 

Phenology is valuable also for climate change research as it serves as a “fingerprint” of occurring climatic 

changes (Parmesan & Gary, 2003). Forests are interesting and important ecosystems for phenological 

monitoring, due to their extensive global cover, their long life span, and their functioning as carbon 

storing ecosystems. 

In recent decades and in different regions worldwide, forests have experienced dry periods that 

have led large-scale decline and even tree mortality (Allen et al., 2010). It was also shown that such dry 

periods trigger various phenological changes (Estiarte & Peñuelas, 2015; Kuster, Dobbertin, Günthardt-

Goerg, Schaub, & Arend, 2014; Misson et al., 2011). Future scenarios show alterations in climate regime 

along with the increase in the frequency and intensity of extreme climatic events such as droughts, fires, 

storms, and floods (IPCC, 2014). Climatic drying trends have been observed also across the 

Mediterranean area (Kafle & Bruins, 2009), and further drying trends associated with reduced 

precipitation and increased evaporative demand are expected (Cook, Smerdon, Seager, & Coats, 2014). In 

this area, where water availability is a main limiting growth factor (Kramer et al., 2000), forests may be 

subjected to the negative influences of future drought periods. In Israel, planted and natural forests are 

spread along a sharp climatic gradient, as defined by the aridity index (Fig. 1), from arid in the southern 

parts of it, through semi-arid in the center and up to dry sub humid and humid in the northern parts. 
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Although the influence of drought events on forested areas in Israel had been studied before (e.g., 

Dorman et al., 2013a, 2013b; Volcani et al., 2005), there are still some uncertainties about how climate in 

the last decades has influenced the phenology of these forests. Specifically, it is still unclear how 

important particular climatic factors are in determining forest phenology, and what is the ability to predict 

future phenological cycles from climatic variables. These questions can be addressed by establishing 

models that quantify the impact of climate variables on phenological cycles. 

1.2 Plant phenology modeling 

Previous phenological studies focused mainly on exploring the shifts in the timing of phenological events 

as a response to various climatic changes, as these shifts constitute solid evidence of the influence of 

global climate change on different species and ecosystems (Cleland, Chiariello, Loarie, Mooney, & Field, 

2006). Such alternations include the effect of increasing temperatures (Luedeling, Guo, Dai, Leslie, & 

Blanke, 2013), shifting precipitation (Nagy, Kreyling, Gellesch, Beierkuhnlein, & Jentsch, 2013), and 

rising CO2 concentrations (Johnston and Reekie, 2008; Zelikova et al., 2015) on plant phenology. Another 

developing research field is phenology modeling using climatic variables. Through the quantification of 

the relations between climate and phenology in previous years, predictions of future phenological cycles 

can be achieved. In this framework, many different phenology models were established in the last 

decades. These models range from simple to complex ones, depending on the amount of species, 

predictors, assumptions, and their spatial scale. Zhao et al. (2013) suggested dividing the existing plant 

phenology models to three main modeling approaches: statistical, mechanistic, and theoretical models. 

The first type of modeling approach includes the statistical or empirical models that correlate the 

timing of phenological events to different environmental factors, mainly climatic variables. Some of the 

models rely on  the simplifying assumption of linear correlations between phenological events and 

climatic factors (Zhao et al., 2013). For instance, least-squares regression was used to quantify the 

response of flowering timing and duration to the surface temperature and the amount of precipitation 

(Nagy et al., 2013). Other, more complex, statistical models assumed that certain amount of heat, photo-
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heat or hydro-heat units above a certain threshold is needed to provoke the occurrence of specific 

phenological event (Zhao et al., 2013). Examples for such models are the spring warming model, winter 

chilling and spring warming model, and photo-thermal model (Hunter & Lechowicz, 1992). An obvious 

advantage of this approach lies in its simplified calculation procedures and the availability of the inputs. 

On the other hand, this simplicity can be also a disadvantage, since specific biological processes are not 

being considered. Moreover, these models were implemented in limited regions, on small sets of events 

and plants, and their implications and predictive abilities were relatively restricted (Zhao et al., 2013).     

The second type is the mechanistic modeling approach that describes known or assumed cause-

effect relationships between biological processes (e.g. bud burst, dormancy, onset, and cessation of the 

growth) and key driving variables present in the environment of plants (e.g. soil water availability, 

photoperiodic cues, and mean temperature) (Zhao et al., 2013). These models make assumptions about the 

actual physiological processes of plant development. Onset models, which aim to simulate the start of the 

growing season, are one example for mechanistic models (Chuine, 2000). They are based on the response 

of bud growth to forcing temperatures (temperatures that force growth during spring when dormancy has 

been released) or to chilling temperatures (temperatures that break dormancy) (Chuine, 2000). Although 

the mechanistic approach considers different growth promoting factors and triggering events, there are 

still mechanism uncertainties due to lack of direct measurements of the state of development during the 

physical processes (Zhao et al., 2013). 

Among these mechanistic phenological models, relatively few studies aimed to predict phenology 

responses to climate change scenarios. The mechanistic process-based forest model that was used by 

Kramer et al. (2000) aimed to give such a prediction in order to evaluate the effect of different climate 

change scenarios on the growth of different forests. Their model showed that in the Mediterranean forests, 

the response of growth to significant drought is species-dependent. Specifically, this climatic event is 

predicted to a have a negative effect for several years on the leaf area index of Pinus pinaster species. 

Another mechanistic model (Vitasse et al., 2011) aimed to predict seasonal shifts in phenological events 
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for the 21st century in response to climate warming in European temperate trees. Their models were tested 

and validated on 2-3 years of direct phenological observations. Although observations were taken from an 

elevation gradient that explored a temperature range, such limited dataset can restrict the validity of the 

predictive model. Improvements in this matter can be achieved by using long-term datasets from remote 

sensing observations.    

The third type is the theoretical models that attempt to model various aspects of plant physiology 

(Zhao et al., 2013). Remote sensing-based phenology model is an important example for this type of 

models. In contrast to traditional techniques of phenology monitoring, remote sensing data from various 

sensors aboard satellite platforms allows to observe and monitor phenology over large scales and at 

regular intervals (Ganguly, Friedl, Tan, Zhang, & Verma, 2010). This modeling approach uses satellite 

vegetation indices (VIs) data and methods for optimizing the model parameters (Zhao et al., 2013). VIs 

are based on relations between certain spectral bands and are often used to quantify vegetation 

phenological and physiological state. The normalized difference vegetation index (NDVI) and normalized 

difference water index (NDWI) are examples for widely-used VIs, that were implemented previously to 

monitor vegetation response to climate (Anderson et al., 2010; Carcinoid, Liver, Nodes, Metastases, & 

Responded, 2010; Gu, Brown, Verdin, & Wardlow, 2007). These VIs were also widely used for 

phenological monitoring and assessment of climate influence on plant phenology (e.g. Delbart et al. 2005, 

White et al. 2005, Pio et al. 2006, Hermance et al. 2015). VIs are good indicators for the phenology of 

plants, as they reflect changes in physiological aspects associated with phenological changes. NDVI is a 

spectral index based on the relations between maximal reflectance in the near infrared region due to leaf 

internal structure, and minimal reflectance in the red spectral region due to chlorophyll absorption 

(Tucker, 1979): 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
      (1) 
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Where ρNIR and ρRED are the reflectance values in the near infrared and red spectral regions, 

respectively. This index, which is tuned to sense changes in leaf structure and chlorophyll content 

(Tucker, 1979), has been used successfully to estimate ‘greenness’, above ground net primary 

productivity, leaf area index, and biomass for a variety of ecosystem types (Currit & St Clair, 2010). 

NDWI, a later developed vegetation index by Gao (1996), is based on the relation between the NIR 

region (approximately at 0.86 µm) and at the short wave infrared (SWIR) spectral region (1.24 µm): 

𝑁𝐷𝑊𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
     (2) 

Where ρNIR and ρSWIR are the reflectance in the NIR and SWIR spectral regions, respectively. 

These channels are located in the high reflectance plateau of vegetation canopies, where the absorption by 

vegetation liquid water near 0.86 µm is negligible and weak liquid absorption at 1.24 µm is present. As a 

result, NDWI is sensitive to changes in liquid water content of vegetation canopies (Gao, 1996). Note that 

several applications for assessing vegetation water content, substitute the 1.24 µm band with the 1.6 µm 

one (Ji, Zhang, Wylie, & Rover, 2011).  

Combined with various biophysical variables, VIs may provide an efficient tool for monitoring 

regional or global-scale phenology. One example of such approach is the growing season index (GSI) 

model (Jolly, Nemani, & Running, 2005) that is calculated from environmental factors (minimum 

temperature, vapor pressure deficit, and photoperiod) and reflects canopy greenness. It is assumed that 

these climatic factors together account for much of the variation observed in the seasonal phenology. GSI 

values were then compared with phenological field observations and NDVI values and showed 

adequately predictions of the intra-annual dynamics of the vegetation canopy in various sites. This model 

showed good performance with no a priori knowledge of the local vegetation or climate (Jolly et al., 

2005).  

Some phenological models focused on changes in the timing and duration of phenological events 

as a result of specific climatic extreme events (e.g., Currit and St Clair, 2010; Nagy et al., 2013). Others 
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(e.g., Vicente-Serrano et al., 2015; Zhou et al., 2015) focused on quantifying the effect of climate on 

NDVI over a restricted time scale (e.g. average seasonal NDVI, annual max NDVI), thus reflecting its 

influence on a certain phenological event. Only a few researches tried to model the whole yearly cycle of 

vegetation phenology (Jolly et al., 2005), and even less to model multiyear phenological cycles (Viskari, 

Hardiman, Desai, & Dietze, 2014). Statistical analysis of time series is a useful modeling approach for 

this type of continuous datasets (remote sensing VIs).  

In the current study, the modeling approach is statistical, with integration of data and methods 

from remote sensing models. Remote sensing VIs were used as a proxy to the phenology of trees, while 

the following potential climatic constraints to plant growth, i.e., temperature, radiation, and water 

availability in the form of precipitation (denoted hereafter as climatic variables) were used as predictors. 

These variables are the main growth-limiting factors that interact to impose complex and varying 

limitations on vegetation activity in different parts of the world (Kramer et al., 2000; Li et al., 2013; 

Nemani et al., 2003). It is important to note that this analysis is primarily concerned with climate factors 

influencing plant phenology, and aims to produce a model that is simple to implement. Therefore, other 

additional important factors that can also alter tree growth - such as soil texture (Zhao et al., 2013), 

nutrients (Nemani et al., 2003), CO2 concentrations (Cleland et al., 2006), and pest phenology (Zhao et 

al., 2013) were not taken into account in the analysis. This model strives to explain and predict continuous 

multi-year phenological cycles, rather than specific phenological events.  

1.3 Phenological monitoring using proximal remote sensing techniques   

Although satellite imagery data can be useful for phenological monitoring (Connor, Dwyer, & Cawkwell, 

2008), it also has major limitations of spatial and temporal resolution. On the other hand, traditional 

ground-based phenological measurements place their own challenges, as they require proficient 

manpower, they are labor intensive, and are difficult to extrapolate over large scales (Hufkens et al., 

2012). Recently, alongside the use of data retrieved from sensors abroad satellites for detecting leaf 

phenology, near-surface remote sensing using conventional or networked red–green–blue (RGB) cameras 
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has been applied in various regions (Crimmins & Crimmins, 2008; Graham, Riordan, Yuen, Estrin, & 

Rundel, 2010; Richardson et al., 2007; Richardson, Braswell, Hollinger, Jenkins, & Ollinger, 2009; 

Sonnentag et al., 2012). These near surface remote sensing methods are becoming widely used in the last 

decade as they overcome on some of the limitations of the common used methods.  

Near-surface remote sensing was used to study phenology of different vegetation types, starting 

form grasslands (Julitta et al., 2014) up to dense forested plots (Sonnentag et al., 2012). Phenology was 

monitored using relatively simple vegetation indices that are based on the relations between the 

normalized brightness of the green band and the normalized brightness of red and blue bands (Julitta et 

al., 2014). These researches demonstrated that using near-surface remote sensing techniques can 

accomplish large-scale and high resolution phenology monitoring (Graham et al., 2010). Moreover, as 

recent studies have shown an agreement between phenological time series and remote sensing matrices 

(Hufkens et al., 2012), data obtained through near surface sensors can potentially be up scaled (calibrated 

to remote sensors) to be used for large scale analyses. 

In spite of the extent use of simple RGB cameras (Garonna et al., 2014; Hufkens et al., 2012; 

Julitta et al., 2014; Richardson et al., 2007, 2009), to the best of the author knowledge, none of the above-

mentioned studies have used VIS-NIR multispectral cameras for phenological monitoring. The 

information that lies within the NIR spectral range is valuable for the study of vegetation phenology, as 

changes associated with phenological events are expressed in it. For example, internal structural changes 

due to leaf senescence have a clear effect on the reflectance in the NIR region. Near-infrared reflectance 

(700-1300 nm) initially rises as the number of scattering interfaces increases as cells split and cell 

contents shrink away from cell walls, and eventually decreases in accordance with further mesophyll 

breakdown (Castro & Sanchez-Azofeifa, 2008). The combination of information about the structural 

changes and pigment content can be expressed in vegetation indices such as NDVI (Tucker, 1979), and 

may serve as a more advanced phenology index as compared with traditional RGB based indices. 

Nonetheless, the determination of phenological stages is species-specific and, therefore, other biological 
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(physiological or anatomical) factors may be required to spectrally-account for cyclic changes in the 

plant.  

Alongside the advantages that lie in using higher amount of spectral bands, there is also a 

potential improvement in the ability to use reflectance data. Such data is normalized according to the 

prevailing illumination conditions in each day, thus minimizing the effects of diurnal, seasonal and 

weather-related changes in scene illumination. Improving the quality of the available data will allow 

acquiring data with higher temporal resolution. Evaluating the performance of multispectral camera for 

phenological monitoring might offer a new methodological direction for long-term phenological studies.  

1.4 Research objectives 

The aim of this research is twofold: (1) to study the phenological behavior of four forests located along 

the climatic gradient in Israel, as a response to potential climatic constraints to plant growth during the 

last 15 years (2000-2014); and (2) to explore the performance of a VIS-NIR multispectral camera in 

assessing a year-round phenological cycle. Specific objectives are as follows: 

1. To examine which vegetation index (NDVI or NDWI) is more suitable for phenological modeling. 

2. To create a time series prediction model that quantifies the effect of potential climatic constraints to 

plant growth (e.g., precipitation, temperature, radiation) on vegetation indices. 

3. To monitor phenological events related to the vegetative growth. Note that this research did not 

focus on monitoring blooming and fruiting events, due to the difficulty to distinguish between these 

elements and the rest of the canopy. 

1.5 Research Hypotheses  

1. VIs are expected to have higher correlations with precipitation anomaly than with temperature and 

radiation anomalies, as Israel is located in a water limited area. The relative importance of 

precipitation anomaly is expected to decrease with the climatic gradient, due to the decrease in the 

aridity towards north. 
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2. It is expected that NDVI and NDWI will have different relations with the climatic variables, as 

NDWI is more related to changes in canopy water content while NDVI is more related to changes in 

photosynthetic activity.  

3. Correlation between phenology and climatic variables can be used for the prediction of future 

phenological cycles. 

4. NDVI time series retrieved from a multi-spectral camera is feasible for phenological monitoring, as 

they reflect changes in parameters associated with the vegetative phenological stage (LAI, 

productivity and biomass). 

 

2. Methodology 

2.1 Study area 

Phenological models were created for four sites (from south to north) that are located in southern Judea 

Mountains (Yatir), Jerusalem Corridor, the Carmel Ridge, and the Upper Galilee. The climatic gradient 

(as defined by the aridity index) extends from arid to dry sub-humid (Fig. 1) where the annual rainfall 

average ranging from 275 to 850 mm and the potential evaporation from 1400 to 1600 mm. These forests 

differ in the composition of the natural tree and shrub species and in the planted trees as well (Table 1). 

The climate over the entire study area is characterized by winter rains occurring mainly during November 

through March, and a relatively long, dry, hot summer (Osem et al., 2009).  

Beside the above-mentioned forests, a separate part of the research was conducted at Ramat 

HaNadiv Park. The park that is located at the southern end of Mount Carmel (32°33'25.62"N, 

34°56'21.46"E) was chosen as a site for operating the multispectral camera. The camera observed the 

north-facing slope that is mainly dominated by three evergreen sclerophyll trees: Mock privet (Phillyrea 

latifolia), Green olive (Olea europaea), Oak (Quercus calliprinos), and Mastic shrubs (Pistacia 

lentiscus). These evergreen tree and shrub species are typical to Mediterranean ecosystems with 

phenological patterns that are characterized generally by short intensive vegetative growth and blooming 
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in the spring. The vegetative stage is timed with maximal water availability and temperature rise (Pollak, 

Swartz Tzahor, & Perevolotsky, 2001). Evergreen species often express only small seasonal fluctuations 

in LAI with a full canopy retained throughout the year, due to their ability to access deep soil stores of 

water and ground water (Ma et al., 2013) resulting from rapid development of deep roots (Hasselquist, 

Allen, & Santiago, 2010).  

   

Fig. 1. Study sites maps: (a) Satellite image of Israel (false color composite of Landsat 8 images) and the 

four forest study sites; (b) Study sites locations along climate zones in Israel. Climatic zones are defined 

by the aridity index (Safriel, 2014).  
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Table 1. Characterization of four study sites 

  

Study sites 
Reference 

Yatir Jerusalem Corridor Carmel Galilee 

Coordinates 

(Lat/Long) 

31°20'20.90"N  

35° 3'29.77"E 

31°45'34.88"N   

35° 3'55.15"E 

32°39'51.37"N 

  35°2'0.67"E 

32°59'29.93"N  

35°23'22.30"E   

Climatic zone arid semi-arid  
semi-arid to dry sub-

humid 
dry sub-humid (Safriel, 2014) 

Annual Rainfall 

(mm) 
275 500-700 550-750 750-900 

(Shahar, 1995) Potential 

evaporation 

(mm) 

1600 ~1600 ~1400 ~1400 

Forest 

Characterization 
Planted trees Planted & natural trees Planted & natural 

trees 
Planted & natural trees 

(Y. Osem, Pers. 

Commun.) 
Vegetation 

Planted trees: 

mainly with Pinus 

halepensis.  

Coniferous tree species:  

mainly P. halepensis, 

Pinus brutia, and 

Cupressus semperviren 

but also Pinus pinea 

and Pinus canariensis  

Shrubs mainly Pistacia 

lentiscus and dwarf 

shrubs Sarcopoterium 

spinosum 

Natural woodlands 

and shrublands: 

dominated by P. 

halepensis, Q. 

calliprinos, Pistacia 

(trees), and Pistacia 

lentiscus (shrubs) 

Natural woodland:  

dominated by Q. calliprinos, 

Laurus nobilis (in the more 

humid areas) and Quercus 

boissieri (in areas exceeding 

600 m ASL) 

Natural vegetation:  

dwarf shrubland 

dominated mainly 

by Sarcopoterium 

spinosum  

Broadleaved species: 

Eucalyptus 

camaldulensis, 

Ceratonia siliqua 

Planted trees: 

 P. halepensis, P. 

brutia and C. 

sempervirens but also 

P. pinea and P. 

canariensis. 

Planted coniferous trees: 

similar to the ones described 

for the Carmel and 

Jerusalem mountains. 

Natural woodland trees: 

mainly Quercus 

calliprinos 
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2.2 Satellite data 

NDVI and NDWI data for 2000-2014 (16-day composite, 250 m spatial resolution) were downloaded 

from a global time-series database of the Global Agricultural Monitoring (GLAM) project 

(http://pekko.geog.umd.edu/usda/test/) (Becker-Reshef et al., 2010). These data were derived from the 

MODIS instrument onboard the Terra spacecraft. The NDVI, calculated from MODIS bands 1 (620–670 

nm) and 2 (841–876 nm), was used as a measure of forest performance, reflecting green biomass quantity, 

and state. NDWI calculated from MODIS bands 2 (841-876 nm) and 6 (1628-1652 nm), provided a 

measure of vegetation water content. Both indices provide measures to the phenological state of forests, 

however since the red band is sensitive to leaf chlorophyll concentration, the NIR band to the leaf cell 

structure, and the SWIR one to the leave water content, the two indices should be considered as 

independent ones (Gao, 1996). The indices were averaged for the polygon that delineated the forest per se 

excluding non-forested areas (e.g. settlements, clearings, etc.).  

2.3 Meteorological data 

Daily precipitation, air temperature (minimum, maximum and average), and global radiation data were 

retrieved from the Israeli Metrological Service web sites (https://data.gov.il/ims) for each forest. 

Temperature and radiation data were downloaded from the closest monitoring stations available. In order 

to better represent the amount of precipitation over the forest area, precipitation data from several stations 

were interpolated for each forest area using a Thiessen method (Ohana-Levi, Karnieli, Egozi, Givati, & 

Peeters, 2015). 

2.4 Statistical model 

The entire dataset (15 years, 2000-2014) was divided into a training period (the first 200 observations) 

and a validation period (the following 133 observations). The training period was used to evaluate the 

existing relations between VIs and the potential climatic constraints to plant growth (i.e., precipitation, 

temperature, and radiation), while the validation period was used to evaluate the predictive skills of the 

model (Fig. 2). In order to study the relations between the climatic variables and the spectral VIs, a time 
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series analysis was conducted. It was assumed that phenological events are a result of accumulated effect 

of climatic variables, and can occur after a certain time-lag. Accordingly, the response of VIs to different 

accumulation periods and time-lags of climatic variables was examined. This was carried out by creating 

a matrix of cross correlation results between the vegetation index and prior moving average (PMA) 

precipitation/temperature/radiation for different periods (up to three years) and different time-lags (up to 

three years), with time steps of 16 days. For each climatic variable, the PMA and lag components that 

created the highest cross correlation with the VIs were chosen for further analysis.  

The cycle components of VIs and climatic variables were derived using Fast Fourier Transform 

(FFT) that decomposes the time series into simpler periodic signals in the frequency domain (Lhermitte et 

al., 2008). By discarding higher order harmonics while retaining the first-order and second-order 

harmonics, it is possible to retrieve lower noise signals that characterize the basic temporal behavior of 

the vegetated surface (Beurs Kirsten M.de & Henebry, 2010). This technique was shown to be 

particularly useful for NDVI time series analysis for describing and quantifying fundamental temporal 

characteristics (Lhermitte et al., 2008).  

The FFT analysis was implemented on VIs and the climatic variables. This part of the analysis 

was applied on the first 200 observations that served as a training period. The FFT of each series was 

derived and the frequencies were ranked by their amplitudes (form large to small). A new time series was 

obtained by: (1) keeping the first n frequencies (those with the largest amplitudes) while setting the 

amplitude of all other frequencies to zero; and (2) inverting this modified FFT series. The cross-

correlation between the new time series (i.e., the one obtained from the VI series and the one from the 

climatic variable series) was calculated. The number n was set by the requirement that the cross-

correlation will be maximal. The time series with maximal cross-correlation were defined as the trends of 

the series. Identifying these trends/cycles enabled us to examine the influence of climatic variables 

anomaly on VI anomalies. Anomalies were calculated as the differences between the measured data and 

the trends. In addition, the series were also examined for temporal trends that are independent of the 
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cross-correlation with the other variables. The data were averaged annually and the effect of time (t, t2, t3) 

was evaluated. The final models were composed from the cycle component and the anomalies of the 

climatic variables that had significant effect on the VIs. 

Predicted time series (last 133 observations) was created using the coefficients and cycles that 

were retrieved from the analysis of the training period. Anomaly of climatic variables was calculated as 

the shift of the measured climatic variables from the cycles that were retrieved from the training period. 

Prediction abilities were evaluated by two measures:  

(1) Normalized Root Mean Square Error (NRMSE). This method compares two datasets and provides a 

measure to the difference between the predicted time series by the model and the actual observed 

time series: 

𝑁𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

(𝑃𝑡−𝑂𝑡)2

1

2
(|𝑂𝑡|+|𝑃𝑡|)

𝑛
𝑡=1     (3) 

Where Pt is the predicted time series, Ot is the observed time series, and n is the number of 

observations.  

(2) Adjusted R2 results from the linear regression between the observed VI time series (in the validation 

period) and the variables that are used for the prediction process, namely, the cycle component that 

was calculated from the first 200 observations and the anomaly of observed climatic variables from 

the calculated cycles of these variables (on the basis of the first 200 observations). This analysis 

measures the fit of the observed data in the validation period to the cycles that were retrieved from 

the training period and the anomalies of the observed climatic variables.   
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Fig. 2. Flowchart for time series analysis 

 

2.5 Year round phenological monitoring 

In order to explore the performance of the multispectral camera and assess a year-around phenological 

cycle, a Mini MCA camera (Tetracam, Inc. Chatsworth, USA) was installed on a monitoring tower 

located on the north facing slope (Fig. 3). The camera was equipped with five spectral bands that were 

centered along the green (550 nm), red (670 nm), red edge (740 nm, 780 nm), and NIR (860 nm) spectral 

regions, with band width of 10 nm. An additional sixth band was converted into the incident light sensor 

(ILS) that gathers the down-welling radiation, so that radiation flux units could be converted into 
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normalized reflectance values. It was located in the upper part of the box looking upwards to the sky. The 

camera was connected to computer with internet connection (Fig. 3), which allowed transferring the data 

daily to the lab. Since the camera was observing a slope, pixel size ranged from 7-16 cm, depending on 

the distance from the camera. Images were taken on an hourly-basis during solar midday, from between 

10:00 and 13:00, using the automatic exposure mode. 

  

Fig. 3. Experimental setting in Ramat HaNadiv Park 

Northern slope 

Monitoring tower 
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Image pre-processing procedure (Fig. 4) included the following processing steps. Firstly, all 

images were visually inspected in order to exclude those that were too dark and/or clouded. For each 

suitable day, three images were selected, in order to minimize the effect of different solar inclination. All 

images were converted from RAW format into TIFF formats and into reflectance values using 

PixelWrench software (Tetracam, Inc. Chatsworth, USA). All necessary geometric corrections were done 

using ERDAS Imagine software (ERDAS, Norcross, USA 2015). The statistical analysis stage included 

daily average calculation and creating monthly NDVI time series. Pixels with NDVI values of 1 were 

masked, as they represent pixels with saturation problem. Eventually, statistical measures of NDVI were 

calculated for each monitored tree, in a monthly time-scale. Trees were marked by polygons which 

included the sun exposed parts only.  

 

Fig. 4. Flowchart of the image processing and data retrieval 

 

2.6 Physiological measurements  

To support the observed phenological processes, physiological measurements were conducted during 

representative dates in each season, on the leaves of 24 selected trees (six individuals of each of the four 

dominant species; Fig. 5). In this framework leaf water potential (Ψl; reflecting water availability), 

stomata conductance (gs; reflecting plants’ main response to water limitation, through changes in stomata 

aperture), and chlorophyll concentration (Chl; reflecting vegetation greenness and the ability to perform 

photosynthesis) values were measured. All three variables are correlated and complement each other 

(Williams & Araujo, 2002), and have been shown to be relevant for phenological studies (Eamus, 1999). 
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Values of leaf water potential were collected with a Scholander pressure chamber (PMS 

Instrument Co., Corvallis, Oregon, USA) from three brunches per tree. Youngest fully-matured samples 

were collected twice a day; once at pre-dawn (about an hour before sunrise) in order to account for soil 

water availability, and once at solar noon in order to assess the water balance during maximum stress and 

to coincide with the spectral observations. Practically, excised brunches were immediately stored in 

cooled, sealed plastic bags until all samples were acquired (around half an hour). In accordance with the 

Ψl observations, stomata conductance (gs) values were also measured twice - once during the morning 

(between 8:00-9:30) and at midday - using a leaf porometer (Decagon Devices, Inc., Washington, USA). 

Four sun-exposed, youngest fully-matured leaves were selected from each tree. 

For Chl measurements one representative brunch was selected from each tree and stored in ice 

until reaching to the laboratory. Analysis was conducted on the next day according to the following steps: 

(1) 3-4 representative leaves were chosen from each tree; (2) 20 mg sample was weighted from each leaf 

and stored in a 2 ml Eppendorf tube; (3) The tubes with the samples were frizzed using liquid nitrogen 

and crushed by shaking the tubes with added metal balls in a shaker for 5 minutes; (4) 1.5 ml of 95% 

Ethanol were added to the tubes, and shacked for 3 to 5 hours until full extraction; (5) Tubes were 

centrifuged for 5 minutes in 14,000 rpm; (6) Samples were diluted by an order of 2.5, and transferred to a 

cuvette. 7) Absorption spectrum was measured in spectrophotometer (Evolution 220, Thermo Scientific); 

(8) Chlorophyll concentration was calculated by placing the absorption results in the concentration 

equation (Lichtenthaler & Buschmann, 2001).  
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Fig. 5. Tree species distribution in Ramat HaNadiv site. 

 

2.7  Statistical analyses and image processing 

Time series analysis was performed using the R software (R Development Core Team, 2014). Spatial 

interpolation of precipitation data was implemented in ArcGIS 10.3 software (ESRI, Redlands, USA, 

2014). All statistical analysis of the data from Ramat HaNadiv site was performed using the Statistica 

12.0 software (StatSoft Inc., 2015, Tulsa, Oklahoma, USA). The significance of the differences between 

mean values was evaluated using one-way Analyses of Variance (ANOVA) test. Thereafter, Tukey’s 

Honest Significance Difference (HSD) post-hoc tests were used in order to compare between specific 

groups. Assumptions of residuals’ normality and homogeneousness of variances were checked and met 

using Shapiro-Wilk and Levene’s tests, respectively. It should also be noted that in several cases the 

assumption of the homogeneousness of variances was violated, and, therefore, suitable data 

transformations were applied.   
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3. Results 

3.1 Inter-site differences in VI's and climatic variables  

Time series of both VI's (Fig. 6) and climatic variables (Fig. 7) present clear periodicity in the 

productivity of the forest as reflected by NDVI and in the leaf water content as reflected by NDWI. These 

time series present also distinct differences between the sites; VIs of Yatir forest are always the lowest, 

followed by Jerusalem, Carmel and Galilee forests, respectively (Fig. 6). Climatic variables show distinct 

seasonal periodicity as well, and the inter site differences are mainly reflected in the precipitation 

variable. Small variations in the mean temperature are observed, while the radiation is almost similar 

along the sites (Fig. 7). 

 

 

Fig. 6. VIs time series along the 15 years of study: (a) NDVI time series (b) NDWI time series. 
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Fig. 7. Climatic variables time series along 15 years. (a) Temperature; (b) Radiation; (c-f) Precipitation.  
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3.2 Correlation between VIs and climatic variables 

Time series analysis using linear regression models was performed on VIs and climatic variables data. In 

this framework, the response of VIs to different accumulation periods and time-lags of climatic variables 

was examined. Results from this analysis show correlations that describe climate-vegetation relations 

(Table 2), and are presented by the sites location from the south (Yatir) to the north (Galilee): 

In Yatir site (Table 2) the highest cross-correlation was found between NDVI and accumulated 

precipitation in the last 80 days without time lag. The explanatory strength of the two other climatic 

variables was lower. The effect of radiation was found to be more pronounced with a lag of two months, 

while for temperature there was no pronounced effect to a time-lag. Same analysis was applied for NDWI 

time series, and showed similar relations with climatic variables, in terms of time-lag and PMA. 

However, in Yatir site the correlations of climatic variables with NDVI were higher than with NDWI. 

As opposed to Yatir site, in Jerusalem site precipitation was not the main explanatory variable, as 

radiation and temperature produced higher adj.R2 results with VIs (Table 2). The correlations of climatic 

variables with NDVI index were higher than those with NDWI. Additionally, the maximal response of 

NDWI to radiation and temperature occurred slightly later than with NDVI. 

In the Carmel forest, the results were quite different from the two southern sites; firstly, the 

highest correlation with NDVI was shown with longer accumulative period of precipitation (112 days). 

Secondly, the correlations with the different climatic variables were rather similar, while precipitation 

showed the lowest explanatory power (Table 2). Thirdly, as opposed to the results from the two southern 

sites, the correlations with NDWI index were similar to those found with NDVI index. 
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Table 2. The effect of climate variables on vegetation indices. All results were highly significant (p 

value<0.001). cc - cross correlation results, Adj.R2 - adjusted R2 results, P - precipitation, T - temperature, 

R - radiation, PMA - prior moving average, m - month. 

  

Yatir 

 
NDVI NDWI 

Variable  PMA Time-lag  Adj.R2 cc PMA Time-lag  Adj.R2 cc 

P 2.6 m - 0.82 0.90 2.6 m - 0.76 0.86 

R - 2 m 0.72 -0.85 - 2 m 0.60 -0.59 

T - 0.5 m 0.65 -0.81 - 1.5 m 0.56 -0.53 

 

Jerusalem 

  NDVI NDWI 

Variable  PMA Time-lag   Adj.R2 cc PMA Time-lag  Adj.R2 cc 

P 3.2 m - 0.78 0.88 3.7 m - 0.77 0.87 

R - 1.5 m 0.86 -0.93 - 2 m 0.82 -0.91 

T - 0.5 m 0.84 -0.92 - 1 m 0.80 -0.90 

 

Carmel 

  NDVI NDWI 

Variable  PMA Time-lag   Adj.R2 cc PMA Time-lag  Adj.R2 cc 

P 3.7 m - 0.78 0.88 4.3 m - 0.79 0.88 

R - 2 m 0.82 -0.90 - 2.6 m 0.83 -0.91 

T - 0.5 m 0.82 -0.90 - 0.5 m 0.80 -0.90 

 

Galilee 

              NDVI NDWI 

Variable  PMA Time-lag   Adj.R2 cc PMA Time-lag  Adj.R2 cc 

P 5.5  m 10 m 0.63 0.80 6 m 24 m 0.55 0.74 

R - 1.5 m 0.71 -0.85 - 2.5 m 0.62 -0.78 

T - 1 m 0.73 -0.83 - 2 m 0.60 -0.77 

 

In the Galilee site, similarly to Carmel and Jerusalem sites, temperature and radiation had higher 

correlation with VI than precipitation, and with rather similar time lag effect. Still, it is worth noting that 

the influence of precipitation on VI was the lowest in this site. This site also resembled Yatir and 

Jerusalem sites, regarding the relations of climatic variables with VI. The correlations between NDWI and 

the climatic variables were lower than those of NDVI. However, the highest response of NDWI index 
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came at a later stage, as can be seen from the higher time-lag for all the climatic variables (Table 2). The 

results in this site differed from those in the other sites in several aspects. Firstly, the explanatory power 

of all climatic variables was lower than in the other sites. Secondly, the best explanatory precipitation 

variable differed from those chosen in the other sites in two aspects: it was summed over a longer period 

(5.5 months versus 2-3 months) and there was also a pronounced time lag effect (10 months versus no 

significant time lag).  

In all sites, the influence of PMA for temperature and radiation was examined, and shown none or 

only slight improvements in the correlation with VIs (data not shown); therefore, it was decided to keep 

these variables in their simpler version (without PMA). Additionally, no significant improvement was 

shown when correlating the maximal, minimal, or average temperature with VIs (data not shown) and, 

consequently, average temperature data was used for further analysis. All three climatic variables showed 

equal or higher correlation with NDVI than with NDWI (Fig. 8). Examining the correlations between 

NDVI and NDWI revealed that the relations between these indices are lowered (Fig. 9) with the transition 

from the arid southern Yatir site to the humid northern Galilee site. Another interesting finding is the 

relatively high range of NDVI values that exists under low NDWI values, as opposed to the convergence 

of NDVI values in the higher NDWI values.  
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Fig. 8. Adj.R2 results for the correlations between NDVI/NDWI and (a) precipitation; (b) temperature; 

and (c) radiation. 

 

Fig. 9. Correlation between NDVI and NDWI in four forest sites. 
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3.3  Decomposing model 

Both VIs were found to be highly correlated with all climatic variables (Table 2), hence the cycle 

component for VIs was chosen on the basis of the cross-correlation between the cycles of the two time 

series (one obtained from the VIs series and one from the climatic variable series). In Yatir site, the 

highest cross correlation (cc = 0.98) was found between VI’s cycle and precipitation cycle, which was 

composed from two dominant frequencies. As for the two other variables, strong negative cross 

correlation (cc = -0.99) was found for cycle with a single dominant frequency. In both cases, the period 

was around one year. It was found that the cycle component that exists in both dependent and explanatory 

variables, explained the majority of variance existing in NDVI (adj.R2 = 0.67) and in NDWI (adj.R2 = 

0.50). Taking into account the anomaly in precipitation improved the adj.R2 of NDVI model to 0.84 and 

that of NDWI to 0.78, while adding anomalies of temperature and radiation, did not improve model's 

performance. Exploring the existence of trend using polynomial time components (t, t2, t3) in a yearly 

based NDVI and NDWI time series, showed that there was no significant time trend (Fig. 19 in 

appendices). The general models are described in equations 4.1 and 4.2. 

In Jerusalem site, cycle component retrieval from the highest cross correlation with the cycles of 

climatic variables showed that there is one main yearly cycle. Similarly to Yatir site, the cycle component 

explained much of the variance (adj.R2 = 0.71) in NDVI and in NDWI (adj.R2 = 0.69). Anomalies of all 

three variables had significant effect in NDVI’s explanatory variable; however for NDWI’s model only 

precipitation and temperature had significant effect. No significant yearly time trend was found (Fig. 19 

in appendices). The general models are described in equations 5.1 and 5.2. 

In Carmel site, the cycle of all climatic variables showed the highest cross correlation with the 

cycle of one dominant frequency retrieved from NDVI and NDWI time series. The period of this cycle is 

one year. In this site the cycle component explained much of the variance (adj.R2 = 0.67) in NDVI time 

series and in NDWI time series (adj.R2 = 0.50) as well. After including precipitation and temperature 

anomalies, the effect of the anomaly of radiation was insignificant, and therefore, it was not included in 
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the final model. Exploring the existence of trend using polynomial components (t, t2, t3) in both VIs 

showed that there was no significant trend (Fig. 19 in appendices). The general models are described in 

equations 6.1 and 6.2. 

In Galilee site, cycle component extraction from maximal cross correlation (cc = 0.96 for NDVI 

and cc = 0.99 for NDWI) with precipitation variable showed one dominant cycle with a period time of 

one year. Slightly higher cross correlation (cc = -0.98 for NDVI and cc = -0.99 for NDWI) was found 

with the cycle of temperature and radiation. This cycle was constructed from two main frequencies that 

both fluctuate around one year. Similarly to other sites, the cycle component explained much of the 

variance in NDVI (adj.R2 = 0.64) and in NDWI (adj.R2 = 0.48). Differently from the other three southern 

sites, radiation and temperature anomalies produced the highest explanatory model for NDVI (adj.R2 = 

0.76), while adding precipitation anomaly was insignificant to the performance of the model. No 

significant yearly time trend was found for NDVI time series (Fig. 19 in appendices). For NDWI, best 

explanatory model (adj.R2 = 0.63) was achieved by adding precipitation and radiation anomalies. 

Differently from all other sites, there was a significant positive trend in the yearly average NDWI values 

(Fig. 19 in appendices). The general models for this site are described in equations 7.1 and 7.2. 

 

𝑵𝑫𝑽𝑰𝒕 (𝒀𝒂𝒕𝒊𝒓) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡 , 𝑡 = 1, … , 𝑛.   (4.1) 

𝑵𝑫𝑾𝑰𝒕 (𝒀𝒂𝒕𝒊𝒓) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡, 𝑡 = 1, … , 𝑛.   (4.2) 

𝑵𝑫𝑽𝑰𝒕 (𝑱𝒆𝒓𝒖𝒔𝒂𝒍𝒆𝒎) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑅𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑇𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡 , 𝑡 = 1, … , 𝑛. (5.1) 

𝑵𝑫𝑾𝑰𝒕 (𝑱𝒆𝒓𝒖𝒔𝒂𝒍𝒆𝒎) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑇𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡  , 𝑡 = 1, … , 𝑛. (5.2) 

𝑵𝑫𝑽𝑰𝒕 (𝑪𝒂𝒓𝒎𝒆𝒍) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑇𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡  , 𝑡 = 1, … , 𝑛.  (6.1) 

𝑵𝑫𝑾𝑰𝒕 (𝑪𝒂𝒓𝒎𝒆𝒍) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑇𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡  , 𝑡 = 1, … , 𝑛.  (6.2) 
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𝑵𝑫𝑽𝑰𝒕 (𝑮𝒂𝒍𝒊𝒍𝒆𝒆) = 𝐶𝑡 + 𝑓(𝑅𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑇𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + Ɛ𝑡 ,   𝑡 = 1, … , 𝑛.   (7.1) 

𝑵𝑫𝑾𝑰𝒕 (𝑮𝒂𝒍𝒊𝒍𝒆𝒆) = 𝐶𝑡 + 𝑓(𝑃𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑓(𝑇𝑎𝑛𝑜𝑎𝑚𝑙𝑦(𝑡)) + 𝑇𝑡 +  Ɛ𝑡 ,   𝑡 = 1, … , 𝑛.  (7.2) 

Where NDVIt and NDWIt are the observed data at time t, Ct is the cycle component, Tt is the yearly time 

trend, Panomaly, Tanomaly, and Ranomaly are the shifts of precipitation, temperature, and radiation from their 

cycle, and Ɛt is the remainder component. 

 

3.4  Validation period 

In all sites the correlations between VIs and the climatic variables in the training period were higher than 

those in the validation period (Table 3). The lowest prediction ability, expressed by the lowest adj.R2 and 

the highest NRMSE results, was shown in the northern Galilee site and the southern Yatir site (Table 3). 

In Yatir site, prediction overestimated VIs as comparison to actual measurements (Fig. 10 & 11.a). In 

Galilee site, the observed data was noisy relatively to the other sites (Fig. 10 & 11.d). However, along all 

of the period and in all sites, prediction was within the internal spatial standard deviation of the data. 

Table 3. Evaluation parameters for model's performance for VIs time series. NRMSE- normalized root 

mean square error, Adj.R2- adjusted R2. All models were highly significant (p value<0.001). 

 

NDVI 

 
Yatir Jerusalem Carmel Galilee 

 
Adj.R2 NRMSE Adj.R2 NRMSE Adj.R2 NRMSE Adj.R2 NRMSE 

Training 0.84 0.06 0.81 0.05 0.87 0.04 0.76 0.03 

Validation 0.66 0.09 0.78 0.06 0.78 0.06 0.54 0.05 

 

NDWI 

 
Yatir Jerusalem Carmel Galilee 

 
Adj.R2 NRMSE Adj.R2 NRMSE Adj.R2 NRMSE Adj.R2 NRMSE 

Training 0.78 0.12 0.82 0.13 0.84 0.10 0.67 0.08 

Validation 0.73 0. 15 0.79 0.18 0.79 0.14 0.42 0.11 
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Fig. 10. Time series analysis results for NDVI time series for the four sites. 
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Fig. 11. Time series analysis results for NDWI time series for the four sites. 
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3.5  Phenological monitoring in Ramat HaNadiv site 

NDVI changes were evident both for the entire plot scale (Fig. 12.a) and for individual species (Fig. 12. 

b-e). In the plot scale, a response in NDVI values to precipitation regime was observed, as NDVI values 

dropped to a minimum in October, after a long dry spell and a recovery trend identified with the renewal 

of rain season (Fig. 12.a). The phenological cycle of the three tree species was alike, with maximal NDVI 

values in spring and summer, minimal NDVI values occurring in the winter time, and increasing NDVI 

values towards spring months (Fig. 12.a-b). P. lentiscus shrubs differed in their phenological cycles from 

the three other species; minimal NDVI values were observed already in the summer months and started to 

rise from September (Fig. 12.e). Although the differences between the months were not significant (Fig. 

12), there were some significant differences between the months that represent the peak of seasons, 

especially between the peak of the first spring season (April 2014) and the rest of the seasons (Fig. 13). In 

all species the standard deviation was the highest in the winter months, probably reflecting different 

timing of start of vegetative growth.   
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Fig. 12. Monthly NDVI and water potential for (a) the plot scale; and for (b) P. latifolia;  (c) O. europaea; 

(d) Q. calliprinos; (e) P. lentiscus.. 
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Fig. 13. Seasonal NDVI for (a) P. latifolia;  (b) O. europaea; (c) Q. calliprinos; (d) P. lentiscus. 

 

The physiological measurements reflected seasonal variation in water availability, in stomata 

aperture, and in chlorophyll concentration. In the summer season, water potential dropped significantly in 

all species, showing adjustments to water deficit in this season (Fig. 14.a-d). In comparison, during 

seasons where water availability was high, no significant differences were shown between the species 

(Fig. 14.e). Although physiological measurements showed response to summer drought in all species, 

there were some differences between them; O. europaea and P. latifolia reached to lower water potentials 

in comparison to Q. calliprinos and P. lentiscus (Fig. 15). Alongside, all species showed adjustments in 

their stomata regulation during the summer season, resulting in a reduced stomata conductance (Fig. 16). 

The variance in this measurement was very high (Fig. 16), presenting a difficulty in getting representative 

and reliable measurement. Total chlorophyll (a+b) concentrations in all species reached to their highest 

values during winter to spring seasons, and to their lowest values in the summer season (Fig. 17).  
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The phenological trends observed from the monthly time series of NDVI (Fig. 12), did not 

correspond directly with the physiological measurements in three of the observed species; minimal NDVI 

values for P. latifolia, O. europaea and Q. calliprinos were observed few months after the summer 

drought reflected by the low water potential values and reduced stomata conductance. Additionally, in the 

summer season, NDVI did not reflect the minimal chlorophyll concentrations that were measured. When 

all observations of chlorophyll concentration were regressed against NDVI or red reflectance values, no 

significant correlation was found (Fig. 18). The phenological trend of P. lentiscus was the only species 

that showed an agreement with the chlorophyll concentrations that were measured. 

 

Fig. 14. Predawn water potential results for four monitored species along the seasons. 
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Fig. 15. (a) Predawn summer water potential; and (b) Midday stomata conductance results for four 

monitored species. Abbreviations: E- P. lentiscus, B- P. latifolia, Z- O. europaea, A- Q. calliprinos. 

 

Fig. 16. Midday stomata conductance results for four monitored species. 
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Fig. 17. Total chlorophyll (a+b) concentration results for four monitored species. 

 

 

Fig. 18. Correlation between total chlorophyll (a+b) content with (a) red reflectance; (b) NDVI values. 
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4. Discussion 

Results from time series analysis showed that generally NDVI had higher correlation with all of the 

climatic variables than NDWI. Moreover, the maximal correlation of both indices occurred approximately 

at the same time (PMA and lag components were similar). Although both indices were previously used 

for monitoring vegetation response to climate events (Anderson et al., 2010; Carcinoid et al., 2010; Gu et 

al., 2007), it seems that for the purpose of phenological modeling, NDVI is more suitable. These indices 

are sensitive to different aspects in the physiology of plants. NDVI is more correlated to photosynthetic 

activity, chlorophyll content and LAI, while NDWI is more sensitive to canopy water content, therefore it 

is possible that other climatic variables could better explain the variance in NDWI. Such variables could 

be environmental factors that affect the water status of plants, for instance, water content in the soil or 

vapor pressure deficit. From physiological point of view, it is highly probable that an initial response of 

NDWI will be distinguished first, indicating the existence of water stress in the summer time. On the 

other hand, since histological changes occur only after a reduction in leaf water content, a delayed decline 

in NDVI values is expected. In order to track this kind of response, different analyses should have been 

applied, such as tracing and comparing the timing of a specific phenological event using both indices. 

Although the analysis aimed mainly to explain the phenology of these forests, and not to focus on a 

specific phenological event, it can be a topic for future studies. 

Various responses of phenology to climatic variables were shown, reflecting a changing 

sensitivity to climate with the transition from one climatic zone to another. When the correlation between 

VIs and precipitation was examined, it was found that the summed precipitation in the last of 3-4 months 

(in three southern sites) or with 5 months precipitation with a certain time lag (in the Galilee forest) 

produced the highest correlations. The findings from the three southern sites are in agreement with other 

studies (Davenport & Nicholson, 1993; Herrmann, Anyamba, & Tucker, 2005) that showed maximal 

response of NDVI to similar summation period. These findings show that the effect of climatic factors on 

phenology is accumulated with time, i.e., a certain amount of water should be absorbed by the soil and 
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trees in order to motivate phenological responses (such as an increase in greenness). Alternatively, a 

certain duration of dry spell and high temperature, inhibits vegetative growth and decreases the greenness 

of the area. The fact that the influential PMA time scale of precipitation was increased with the transition 

from southern (2.5 months) to the northern site (5.5 months) can be attributed to diminishing role of water 

storage in the southern sites (Dorman, Perevolotsky, Sarris, & Svoray, 2015b). Although this research 

explored the effect of precipitation on tree growth, this parameter is closely related to the phenological 

cycle of trees. It demonstrated that in such dry areas, the influential rainfall scales are shortened, as the 

potential for water to be stored and carried over from one year to the next is low, due to very negative 

water balance which leads to loss of most of the annual rainfall during the same year (Dorman et al., 

2015b).  As a result in these dry sites, where water availability is low, phenological cycles are driven by 

short term precipitation periods 

The results showed that the importance of precipitation anomaly differed between the sites (Table 

2); its influence on phenology was reduced with the climatic gradient. In the northern sites the average 

precipitation is high enough to ensure functioning of the forest even under anomalous conditions. On the 

other hand, in the southern sites deviations from the average show immediate impacts. This finding can be 

explained as well by the lower accessibility of the southern site to deep water storage. As a result, the 

precipitation regime is a crucial factor in determining the phenology of these forests. Another interesting 

finding was the decreasing correlation between NDVI and NDWI from south to north (Fig. 9), indicating 

that in the northern site the water content is close to its maximal capacity, and therefore does not function 

as a limiting factor to the forest’s greenness. The range of NDVI values shown under the same low NDWI 

values (Fig. 9) might be related to different physiological adaptations of trees to water stress conditions. It 

seems that under very low water content (expressed by low NDWI) forests in the northern sites manage to 

retain higher productivity (expressed by higher NDVI) relatively to the southern sites. In the transition 

from semi-arid climatic zone to humid zone the annual amount of precipitation can differ up to 550 mm. 

These differences in the available amount of water between the sites can explain the fact that precipitation 
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was a weaker limiting factor in the northern sites. The studied forests differ also in their species 

composition; Yatir forest is mainly a monoculture P. halepensis forest, while other sites were more 

heterogeneous forests. The phenology of Mediterranean coniferous forests is mainly driven by water 

availability (Kramer et al., 2000), especially the phenology of forests that are situated in arid areas (S. M. 

Vicente-Serrano, 2007). Although P. halepensis is considered a resistant species to water stress (Atzmon, 

Moshe, & Schiller, 2004), the results indicate that its phenology dictated mainly by precipitation. In 

comparison to Yatir site, precipitation became equivalent or minor factor relative to temperature or 

radiation in others sites. Temperature is another major factor controlling the phenology of tree species 

(Morin, Roy, Sonié, & Chuine, 2010), and it is highly correlated with radiation. It is possible that in the 

northern sites, where precipitation amount is higher, temperature and radiation are stronger phenological 

triggers. Other site characteristics such as: the age of trees, their density, the lithology, the topography, 

can influence the functioning of these ecosystems, and their response to climatic variables. In order to 

quantify the influence of these factors, the spatial resolution of the analysis should be improved, thereby 

allowing capturing the variance in these variables.  

VIs time series showed an annual cycle in all sites. This was supported by high correlations 

(Adj.R2 of 0.5-0.7) between NDVI and the annual cycle component. Adding the anomaly of climatic 

variables produced models with high explanatory power. This indicates that much of the deviation of 

NDVI from its cycle could be explained by the deviation of climatic variables from their cycle, i.e. the 

anomaly in climatic variables clearly affects the anomaly of NDVI. As an explanatory model, this 

statistical modeling approach performed pretty well. However, examining the results from the validation 

period raised some challenges to the model performance for prediction purposes. The variability in the 

prediction ability between the sites can be attributed to two main reasons. Firstly, the occurrence of 

influential environmental events such as: fires, pest outbreaks and human intervention (pruning trees and 

diluting their density), were not considered in the model. This type of events can have a large scale 

influence on forest performance and greenness. Secondly, it is possible that a specific training period 
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should have been fitted to each site. This direction should be further studied in order to define criteria to 

the choice of training period duration.  

Results showed low predictive performance in years of unique climatic conditions; for instance, 

the last year of prediction showed large deviation from the measured data in all sites. This winter of 2014 

was characterized by an uneven distribution of rain events, with two intense rain periods. Such events 

increase the runoff, decrease infiltration of the water to the soil, and therefore minimize the assimilation 

of water by the roots (Trenberth, 2011). Moreover, it might cause long term effects by intensifying soil 

erosion by runoff (Ziadat & Taimeh, 2013). In this year, which can be considered as a disturbance year, 

the prediction ability was tested under conditions that were quite different from those that were presented 

during the learning period. The annual distribution of rainfall in the learning period was more close to 

normal, and did not include years with such intense rain events. Although anomalies are taken into 

account in this model, it seems that they are not capturing the effect of such events, due to PMA time 

scale. PMA sums the precipitation for a period of three to five months, thus it is not able to express the 

distribution of precipitation along the rainy season. It was demonstrated (Dorman, Perevolotsky, Sarris, & 

Svoray, 2015a) that in semi-arid regions, it is important to take into account not only the annual rain 

amount but also other factors that quantify the effect of rainfall intensity, the proportion of large rain 

events, and the dry season length.  Specifically in Yatir site, it can be seen that in the validation period the 

model overestimated NDVI in most of the period. The lower NDVI that was observed in this period 

might be due to the sequence of drought years occurring before and within the validation period. Each 

drought event influences not only on the current year, but might have implications on the coming years, 

as both the initiation of needle primordia and elongation of needles are affected by the availability of 

water (Kramer et al., 2000). A sequence of dry years might have a more complex effect on the phenology 

of forest, eventually expressed in lower NDVI values for several years. Moreover tree mortality occurred 

in several locations within these sites (Dorman, Svoray, Perevolotsky, et al., 2013; Ungar et al., 2013), 

and can have substantial effect on the mean regional NDVI. The limitations of the model that were 
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considered here may be overcome by considering additional variables such as the number of rainy days, 

the distribution of the precipitation and the duration of the droughts (or excess precipitation periods).   

Phenological monitoring in Ramat Hanadiv site showed annual cycles of four monitored 

evergreen tree and shrub species, and also an annual cycle for the plot scale level. Some of the observed 

changes in NDVI in the plot scale, can be attributed to the presence of herbaceous annual plants that 

contribute to higher NDVI values in the spring time. The monthly NDVI values for the four species were 

characterized by high variance. It is important to consider the fact that this research was conducted in a 

natural site, and not under a controlled environment, thus it reasonable to have some variation in the 

phenological cycle, even within the same species. This variance can be also effected from changes in 

microclimate conditions, or from species gender in the case of P. lentiscus. The phenology of all species 

was shown to be dictated by water availability. Although the vegetative growth occurred in different 

timings for each species, in all cases the rise in NDVI values occurred after a certain time lag from the 

beginning of rainy season. These findings are in correspondence with other researches that showed the 

phenology of Mediterranean trees is dictated mainly by water availably (Kramer et al., 2000). Specifically 

in Ramat HaNadiv, the general pattern and the fluctuations of the phenology of Philerya trees was found 

to be mainly regulated by water availability (Pollak et al., 2001). Minimal NDVI values for three tree 

species were shown around December 2014, after the long dry spell of the summer. Differently from 

these tree species, P. lentiscus shrubs showed minimal NDVI values already during summer season. In P. 

lentiscus grown under Meditterenean field conditions, leaf senescence, which is followed by abscission 

usually occurs in the summer (Diamantoglou & Kull, 1988). 

Physiological measurements described water relations in individual trees and showed different 

responses to drought conditions occurring in the summer season. This was expressed in low water 

potentials of O. europaea and P. latifolia relatively to Q. calliprinos and P. lentiscus. Stomata closure as 

a result of water stress was regulated more strictly in Q. calliprinos and O. europaea relatively to P. 

latifolia and P. lentiscus. Although some variations were shown in the physiological response to water 
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stress, it seems that the three tree species were able to retain relatively high NDVI values during the 

summer period. This characteristic of Mediterranean evergreen species is possible due to their adjustment 

to local climate through the development of deep root system (Canadell, 1996; Castro-D´ıez & 

Montserrat-Mart´ı, 1998). 

The low correlations of total chlorophyll concentrations with NDVI are probably a result of an 

unrepresentative sampling procedure (only one representative branch was sampled form each tree). In 

evergreen trees, where leaves from different ages can be a part of the same canopy, it is important to try to 

model the amount of young and old leaves and to represent it correctly in the sample. Therefore, it is 

highly recommended to increase the number of samples. Additionally, it was previously shown (Zarco-

Tejada, Miller, Morales, Berjón, & Agüera, 2004) that spectral indices do not show the same performance 

in tracking chlorophyll concentrations at the leaf and the canopy levels, due to the effect of scene 

components, such as soil and shadows. Moreover, Sun-exposed and shaded leaves have been shown to 

exhibit considerable physiological and morphological differences (Castro & Sanchez-Azofeifa, 2008). In 

the current study, these effects were partly considered by choosing manually the lighted parts of the tree 

for the analysis, and in most cases trees with dense canopies were chosen. An improvement can be 

achieved by using image classification as a preprocessing step. This might minimize the variability 

associated with the effects of shading and soil background, and result in more pronounced phenological 

cycles.  

Additional important directions for further research are recommended. The first is including field 

phenological observations that will allow correlating the timing of phenological events derived from 

NDVI time series with those observed in the field. Combination of physiological measurements with 

phenological observations will allow explaining the cycles not only in regard to the physiological state of 

trees but also to their pheno-phases. The second is the low performance of the camera in clouded and dark 

days (especially in the winter months). In the spring and summer months the images were mainly bright 

and clear. Starting from the September, images became darkened due to low exposure adjusted by the 
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automatic mode. The third is the reliability of reflectance values in clouded days. The site is located close 

to a marine area, therefore the amount of cloudy days is relatively high. As the camera is located about 

200 m from the monitored slope, it is possible that under cloudy conditions the down-welling radiation 

gathered by the ILS, is not the same as in the monitored area. This might cause to a biased reflectance 

values, therefore, such affects have to be quantitatively evaluated. The fourth is the essential need for 

automated image processing procedure in order to create continuous VIs data. In the long term, such data 

will allow quantifying the relations between climatic variables and spectral VI, and provide an 

understating of how climate changes affect Mediterranean ecosystems.   

 

5. Conclusions 

Time series analysis was implemented on phenological record of the last 15 years in four forests located 

along a climatic gradient in Israel. This analysis quantified the relations between the phenology of these 

forests (in the form of spectral vegetation indices) and three main climatic variables. In accordance with 

the hypothesis, this analysis revealed that the relative influence of precipitation is decreasing from south 

to north, and the duration of the most influential precipitation period is increasing, indicating on the 

diminishing role of moisture stored in deep soil layers. However, the hypothesis of precipitation anomaly 

being the main driver of phenology in all sites was rejected. These findings show that the phenology of 

the studied forests is sensitive to the existing variations in climate in Israel. Contrary to the hypothesis, 

both VI's showed similar relations with climatic variables. NDVI was slightly more correlated with 

climatic variables than NDWI, thus suggesting that it is more suitable for phenological modeling using 

these specific climatic variables. The explanatory models that were created on the basis of this analysis 

showed a relatively high explanatory power, and a reasonable predictive skill. Specifically, it was shown 

that the predictive performance of the model in years with extreme climatic events is lower. Climate 

predictions show that the frequency of such events is expected to increase (IPCC, 2014); therefore, it is 

highly important to have reliable models that will indicate how forest phenology will respond to future 
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climate scenarios. The fact that these models were implemented on forests that lay across a climatic 

gradient, extends their relevance to various regions across the Mediterranean, therefore it is worthy to 

study them further. Improvements can be achieved by transition to a more complex modeling approach 

that takes additional biotic and abiotic factors into account. Additionally, it is important to represent not 

only the accumulated effect of climatic variables, but also their distribution in time and additional 

characteristics of their variability. Results from one year of monitoring in Ramat HaNadiv site showed 

distinct phenological cycles of the dominant tree and shrub species. It seems that the phenology of these 

species is dictated by the water availability in this area, and the rise in NDVI values occurs after similar 

precipitation summing period as was detected in the forested areas. Several methodological directions 

regarding the automated processing of the data and image classification remained open and require further 

research. In summary, the use of VI's time series for both monitoring and modeling purposes has shown 

promising results that might be implemented for ecosystems monitoring and climate change influence 

assessment.  
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7. Appendices 

7.1 Technical recommendations for further work with MCA camera 

1. Bands selection- In order to monitor the location of red edge position by the interpolation method 

(Eq. 8), additional band in the red spectral range is needed, preferably a band with central 

wavelength of 700 nm. 

𝜆 = 700 + 40 ∗
((𝜌670+𝜌780)/2)−𝜌700)

(𝜌740−𝜌700)
    (8) 

2. Bands calibration- There is a need to make sure that the bands are well calibrated and that the 

relative exposure settings are adjusted according to the sensor sensitivity. In the current case all 

bands (except the master band) received 100% relative exposure. The correctness of this 

calibration needed to be checked in front of the company. 

3. ILS calibration- as the operations of this component is still unclear for us, it is necessary to 

validate the reflectance data. This can be achieved by laboratory experiment, in which an image of 

an object and a white reference will be taken. It is important to make sure that the white reference 

and the ILS component are located in the same angle to the light source. 

4. Geometrical correction- The quality of geometrical alignment carried out in the Pixel Wrench 

software was not satisfactory for our applications. The deviation between the bands reached to 2-3 

pixels, whereas results from calibration in ERDAS software improved the deviation to about half a 

pixel.  However, a lack of automated process in ERDAS software makes it very hard to work with 

large amount of data. 

5. Storage box- The effect of used relatively thick glasses should be examined. Maybe it worthwhile 

to use thinner glasses. Additionally, it is very important to keep the glasses clean.  
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7.2 Additional Graphs 
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Fig. 19. Regression results between yearly mean VIs and time. There was no significant yearly time trend 

in VIs in all sites except in the NDWI of Galilee site. 

 

  

 

 


