Hate love affair between trees and pavement

Werner Hendriks TreeBuilders w.Hendriks@treebuilders.eu Feb. 2019 Ramat Hanadiv

Ideal Soil ?

Urban tree planting system

No system

Urban tree planting system

No system

The best urban treeplanting solutions ?

Targets/goals

Budgets

Expectations

Urban tree planting systems

Basic knowledge

- Science of trees
- Soil science
- Road foundations
- Designing trees

Context

- City scape
- Local condition

Different approaches

- Lod spreading solutions
- Load relieving solutions

Science of trees

It is all about soil volume

Soil science

trees? **Uncompacted top soil** Texture sand / silt / clay **Nutrients** N P K +

Whats the best soil for

Road foundation

compaction, compaction and compaction

Load capacity

Traffic load

No settlement

Subsoil conditions

Desiging trees

Treepit design: Do it ones do it right

Plantsize design

Design for future tree

Root heave

Anchor roots

Lifting up curbstones/ pavement around the tree

Feeder roots

Lifting up pavers asphalt futher away from the tree

Utilities

Rules regulations

Work around utilities

Integrating utilities

Roots penetrating utilities

Deadlines

weather conditions

savings on budget

Protections of soil conditions

Urban tree planting solutions

NL; 1^e commercial Concrete susp. pavement

2000

US: Silvacell 1^e commercial PP struc. soil cell

SE: Stockholm method RBSS+Biochar

2010

NL: Urbangranulate 40% soil volume

NL: structural Soil cell + bioretention

Trend: Larger rocks

202

Bartlett tree research (second research started in2014)

SILVA CELLS

STRATA CELLS

GRAVEL BASED STRUCTURAL SOIL

Solutions to think of when planting new trees

Structural soil

Root penetrable road foundation

Load support system

Pressure spreading tool

Suspended pavement systems

Basement filled with uncompacted soil

Structural soil

Sand Based SBSS

Rock Based RBSS

Principle of structural soil

Rock based structural soil

ingredients ; Rock based structural soil

Rock/Gravel+soil=structural soilCa 70 - 80%20 - 30%

Rock

Porous rock

Solid rock

Soil

Sand Silt Clay Organic matter

Additive:

Vertilizer Biochar Hydrogel

Installing

Washing in soil

The best way if done correctly

Prefab mixing

Less mistakes possible

Compacting by layer

Compact each layer of 20-30 cm

Tree root guiding Aeration Irrigation

Roots in structural soil

Postponing rootheave

Size of the stone Tree species Weaving roots

Specifying structural soil

By name

Stockholm method Urbangranulate CU-soil

or

By functionality

Load capacity Pore space % Soil volume % Water permability rate Watercapacity pH EC Organic matter Etc

Structural soil in general

+ Heavy traffic loads (solid rock)

+ Applicable everywhere

- Not all utilities are allowed to cover up with rocky soil
- Postponed rootheave (depending stone size)
- Lots of volume needed
- No digging possible by hand

Sand based structural soil

SBSS

- + Applicable everywhere
- + Intergrating utilities no problem
- + Easy to use
- Postponed root ehave
- Lots of volume needed
- Load bearing capacity

Load support systems

Cellular confinement system (CCS)

Sandwichconstruction

Principle of load support systems

Cellular confinement system

Principle of cellular confinement system

Sandwich construction

Principle of Sandwich construction

Functions

Load support

Load spreading

Horizontal rootbarrier

Airlayer will prevent roots from growing up

Organic material

Mulch in the sytem will have positive effect on tree.

With or without soil?

Rootheave increases with:

bigger roots closer to the surface

Installation

Pavers Gravel/sand layer Geotextile (Mulch) Sandwichboxes Reinforced geotextile SBSS / Local soil

Tree root guiding Aeration Irrigation

Specifying sandwichconstruction

By name

or

Variotreebox/ Sandwichbox Permavoid/Arborraft Sandwichpanel Aqua multibox

By functionality

Maximum load capacity. Horizontal load capacity Connection strenght

Sandwichconstructie

- + Load support system
- + Less road foundation needed

- Postponed root heave
- Horizontal forces (emergency stop)

Suspended pavement

Principle of suspended pavement system (structural soil cell)

Principle of suspended pavement system (structural soil cell)

Principle of suspended pavement system (structural soil cell)

Principle of suspended pavement system (structural soil cell)

Principle of suspended pavement system (structural soil cell)

Supended pavement system

Concrete prefab/ in-situ

Galvanized steel

Combinations

Polymeren

Structural soil cell

Segmented soil volumes:

NO natural water and air distribution

1 soil volume: Natural water and air distribution

Small openings

How about : BIG roots? Filling in soil?

NO small openings

1^e or 2^e floor planting

No wrong no right

Trunkflare Oxygen Rats, mice Garbage

1^e maaiveld aanplant

Preventing:

Migration of soil Rootheave

Utility friendly

No wrong no right

How flexible is the system

Specifying structural soil cell

By name

Over 20 different systems

or

By functionality

Maximum load capacity. Soil volume inside Smallest opening for roots Depth of toplayer Height of the systems Aeration, irrigation Stormwater retention Garantee

Suspended pavement

+ high efficient soil volume
+ every soil can be used within
+ intergration of utilities possible
+ no root heave

- Load bearing capacity (not underneath roots >30 km/h)
- Room to work around

Depending on system

- + modules adaptable to underground obstacles
- + Water retention

Root heave excluded

Load relieving solutions

What is the best urban treeplanting solutions ?

What is the best urban treeplanting solutions ?

Targets/goals

- Healthy treegrowth
- Load capacity
- Water retention (pollution uptake)
- How much space you have

- Budget
- Investment
- Value of trees

Expectations

- Maintenance (rootheave)
- Utilities yes or no
- How much space you have

Its depending on parameters that differ per project.

But all is better than doing nothing at all. Urban tree planting system is just one part of the puzzle.

Rain water collected inside airlayer, Saturation of the soil

Rain water collected inside airlayer, Saturation of the soil

Overflow in waterstorage tank

Rain water collected inside airlayer, Saturation of the soil

Overflow in waterstorage tank

During dry weather water is availabe for the tree

ROOTBARRIER

ROOTBARRIER

TREEROOTGUIDE

